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Abstract

A cross-shaped tube bundle with small ratio of the gap width to tube diameter may be designed for the lower plenum

structure in a next-generation BWR, though the characteristics of flow-induced vibration of this type of tube bundle

remain virtually unknown. In this study, fluid dynamic forces acting on a cross-shaped tube bundle in a normal

arrangement with small ratio of the gap width to tube diameter subjected to cross-flow were measured by water tunnel

tests with two types of scale model. One was a small-scale model to measure local fluid dynamic forces and their

correlation length in the lift and drag directions. The other was a large-scale model to investigate the effect of the

Reynolds number on fluid dynamic forces in the lift, drag and torsional directions. Free oscillation tests with another

small-scale model were also conducted to measure vibration amplitude by random excitation force. The following

results were obtained. The measured fluid dynamic drag, lift and torque acting on the cross-shaped tube bundle in cross-

flow were successfully compiled into the correlation equations, which include the nondimensional power spectral

density (NPSD) of the local fluid dynamic force and the spanwise correlation length. The Reynolds effects on the NPSD

can be considered negligible at least in the range of Reynolds number o106. No remarkable spectral peaks of vortex
shedding appeared in the NPSD, and the ratios of the correlation lengths to the tube diameter for the cross-shaped tube

bundle were much shorter than that of the random excitation force acting on circular tube bundles. It is considered that

this was because the ratio of gap width to tube diameter was small for the tested arrangement.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

When designing a plant structure subjected to flow, it is desirable to evaluate flow-induced vibrations in order to

confirm the long-term integrity of the structure. With tube bundles, which are familiar structures in heat exchangers, the

stress amplitude caused by turbulence-induced vibrations needs to be estimated, and both fluid-elastic vibrations and

vortex-induced vibrations have to be avoided. Many studies have been conducted on flow-induced vibrations on

circular tube bundles, as reviewed in depth by Chen (1987), Weaver and Fitzpatrick (1988), Blevins (1990), Au-Yang

(2001), and so on. A guideline for evaluating the flow-induced vibration of circular tube bundles is given in the ASME

Boiler and Pressure Vessel Code (1998).

Regarding turbulence-induced vibrations of circular tube bundles, the characteristics of turbulence excitation forces

have been investigated experimentally by many researchers such as Blevins et al. (1981), Pettigrew and Gorman (1981),
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Chen and Jendrzejczyk (1987), Axisa et al. (1990), and Inada et al. (1993, 2001). Au-Yang (1999) reviewed the

theoretical development of the acceptance integral method to estimate the random vibration of structures subjected to

turbulent flow.

A cross-shaped tube has been proposed for the control-rod guide tube of the next-generation BWR instead of a

circular tube, in which case the lower-plenum structure will be a cross-shaped tube bundle (Yamashita et al., 2001), even

though cross-shaped tubes have rarely been used in practical engineering structures. There have also been few studies on

flow-induced vibrations of a cross-shaped tube bundle, and their characteristics remain largely unknown. Consequently,

it is necessary to investigate their characteristics and to develop methods for predicting them. Inada et al. (2002, 2003)

measured the vibration response of a cross-shaped tube bundle to clarify the characteristics of self-excited vibration and

proposed a guideline to avoid it.

In this study, water tunnel tests with two types of scale model were conducted to investigate the characteristics of the

fluid excitation forces acting on a cross-shaped tube bundle in a normal arrangement subjected to a cross-flow. Local

fluid dynamic forces and their correlation length in the lift and drag directions were measured with a small-scale model

of a practical plant now being planned. The effect of Reynolds number on fluid dynamic forces was investigated by a

large-scale model. From the experimental results, dimensionless correlation equations that include the nondimensional

power spectral density (NPSD) and spanwise correlation length for the local fluid dynamic forces were derived. Free

oscillation tests with another small-scale model were also conducted to measure vibration amplitude by random

excitation force to examine the validity of the proposed correlation equations.

2. Experimental arrangement

2.1. Experimental apparatus of small-scale model

Figs. 1 and 2 show the experimental apparatus of the small-scale model tests for measuring local fluid dynamic forces

and their spanwise correlation length.
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Nomenclature

D tip-to-tip diameter of cross-shaped tube

f frequency

fn natural frequency

f � nondimensional frequency

Ip inertia moment of cross-shaped tube in torsional direction

l length of structure

Re Reynolds number

S one-sided power spectral density or cross-spectral density of local fluid dynamic force

S0 one-sided power spectral density of fluid dynamic force acting on tubes with finite spanwise length

T transverse pitch

Ug gap flow velocity

UN incident flow velocity

Wg reference gap width

x axis in spanwise direction

F one-sided nondimensional power spectral density of random excitation force or torque

zn structural damping ratio

Z l=l

y angular displacement

l correlation length of fluid dynamic force

n kinematic viscosity

r density of fluid

on natural angular frequency
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A schematic diagram of the test loop for the small-scale test is shown in Fig. 1. The loop is a water circuit, with a test-

section which measures 300mm in width and 280mm in depth in the transverse direction against the flow and 400mm

long in the streamwise direction. The flow is provided by a pump and is passed through a turbine flow meter, a surge

tank and a flow rectifier, and then enters the test-section. The flow rate is measured by a turbine flow meter. The

turbulence intensity of the incident flow into the test-section is about 6% of the steady flow velocity, which was

preliminarily measured with a hot film at the entrance of the test-section.

Figs. 2(a) and (b) show the small-scale model of the cross-shaped tube bundle arranged in the test-section. The model

consists of cross-shaped tubes, which simulate the outer shape of the cross-section of the tube designed for the planned

practical plant. The reference diameter D of the cross-shaped tubes shown in Fig. 2(a) is about 90mm and the spanwise

length is 280mm. A normal arrangement of five rows with four columns per row is used for this investigation. The

transverse pitch is about 75mm and the minimum gap width shown in Fig. 2(a) is about 8mm. The tubes are subjected

to a cross-flow entering the test-section. The four tubes (colored white in Fig. 2(a)) are for the fluid dynamic force

measurement, while the other tubes are dummies.

The sensing mechanism of the local fluid dynamic forces is shown in Fig. 2(c). The fluid dynamic forces acting on

cross-shaped sensing parts of 12mm-width installed in the tubes were measured in the small-scale model tests. The

sensing part is elastically mounted on the stainless steel shaft through a spring plate to form a spring-mass system.

Waterproof strain gauges are stuck to both surfaces of the spring plate. In a preliminary calibration test of the sensing

mechanism, a weight was hung on the sensing part, and the magnitude of the force acting on the sensing part was

correlated to the output of the strain gauges. If the natural frequency of the sensing system is much higher than the

objective frequency of the fluid force, the sensing part nearly corresponds to the fluid dynamic force statically, and the

strain gauge outputs can be reduced to the amplitudes of the fluid dynamic forces according to the static calibration

tests. Generally, the error is within the range of 20% on condition that the minimum natural frequency of the sensing

system is three times higher than that of the input dynamic force. The minimum natural frequency of the sensing system

in water is about 70Hz according to hammering tests, so measured fluid dynamic forces under 25Hz were adopted in

the tests. Four sensing parts spaced 34mm apart were installed in each tube, so the local fluid dynamic forces were

measured at 16 points simultaneously.

It should be noted that the sensing mechanism responds to a force in one direction, and cannot simultaneously

measure the drag and lift. In the small-scale tests, the dynamic lift was measured first, then the tubes with the sensing

mechanism were rotated 90� around the tube axis and the dynamic drag was measured.

2.2. Experimental apparatus of large-scale model

Figs. 3 and 4 schematically show the experimental apparatus of the large-scale model used for the tests conducted at

high Reynolds number.

The vertical water tunnel of the gravitational draining type shown in Fig. 3 was used for the tests. It consists of an

underground reservoir of 1700m3, an upper reservoir of 40m3, a vertical water tunnel section and a draining valve.

Before the tunnel is operated, water is pumped up from the underground reservoir to the upper reservoir with the

draining valve closed. Once the upper reservoir has been filled with water, the valve is opened and the water flows into
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Fig. 1. Test loop for the small-scale model tests.
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the test-section through the contraction driven by gravitational force and drains into the underground reservoir through

the valve. With this kind of water tunnel, experiments with a high flow rate can be conducted without requiring a high-

power pump. The test-section is rectangular with a width of 1000mm and depth of 500mm. The incident flow velocity is

measured by an electromagnetic current meter during the fluid force measurement. The turbulence intensity of the

incident flow is about 1.5% of the steady flow velocity according to preliminary measurements by Laser Doppler

velocimetry.
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Fig. 2. Test tubes of small-scale model arranged in test-section: (a) side view; (b) top view; and (c) sensing mechanism to measure local

fluid dynamic force.
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A schematic of the large-scale model of the cross-shaped tube bundle is shown in Fig. 4. A normal arrangement of

four rows with three tubes per row is used for the tests. The reference length D of the model tube is approximately

200mm and the reference gap width is approximately 19mm. The transverse pitch T is approximately 170mm. The

tubes are subjected to a cross-flow entering the test-section.

The fluid dynamic forces acting on the center tubes in the second and third rows were measured in the large-scale

model tests. Both ends of the two tubes are supported elastically through the supporting parts shown in Fig. 4(b). The

supporting part has a cylindrical section with an outer diameter of 34mm and inner diameter of 30mm. Strain gauges

are fitted on the inner surface of the cylindrical section. Their outputs were correlated to the magnitude of the static

forces in the lift, drag and torsional directions acting on the tube by preliminary calibration tests of hanging a weight.

The fluid dynamic forces acting on the whole span of the tube were estimated by the strain gauge outputs. The measured

fluid dynamic forces under 40Hz in the lift and drag directions, and those under 50Hz in the torsional direction are

adopted because the natural frequencies of the two tubes in water are 129 and 150Hz, respectively.

2.3. Experimental conditions

All experiments were conducted under conditions of normal pressure and normal temperature. Summaries of the

model specifications and experimental conditions are shown in Table 1. The Reynolds number is defined by the

following equation in terms of the gap flow velocity Ug:

Re ¼ UgD=n; ð1Þ

where the reference length D is the tip-to-tip diameter of the cross-shaped tubes. The gap flow velocity Ug is given by

Ug ¼ UN

T

Wg

; ð2Þ

where UN is the incident flow velocity, T is the transverse pitch, andWg is the minimum gap width shown in Figs. 2(a)

and 4(a).
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Fig. 3. Test loop for large-scale model tests.
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Fig. 4. Test tubes of large-scale model arranged in test-section: (a) Layout of the tubes in the test-section and (b) sensing mechanism to

measure fluid forces.

Table 1

Experimental conditions

Small-scale model Large-scale model

Diagonal diameter approx. 90mm approx. 200mm

Gap flow velocity 0.45–3.6m/s 3.4–6.0m/s

Reynolds Number 4� 104–3.2� 105 6.8� 105–1.2� 106
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3. Experimental results of small-scale model tests

3.1. Characteristics of PSD and CSD of fluid dynamic force

Fig. 5 shows typical power spectral densities (PSD) of the dynamic lift force acting on a sensing ring of each tube in

the first through fourth row. Each PSD gradually decreases as frequency increases, and no remarkable spectral peaks

appear. In the case of circular tube bundles, spectral peaks of vortex shedding are often observed, as reviewed by

Weaver and Fitzpatrick (1988) and Blevins (1990), and these are a potential cause of acoustic resonance as well as

vortex-induced vibration. However, these distinct frequency components of vortex shedding degenerate into a broad-

band spectrum in closely spaced tube arrays with a pitch-to-diameter ratio of less than 1.5 (Blevins, 1990). Accordingly,

the result shown in Fig. 5 with no remarkable spectral peaks is considered reasonable, because the gap width is

approximately one-tenth of the reference diameter in the tested arrangement of the cross-shaped tubes. The PSD of the

dynamic lift force acting on the tube in the first row is smaller than those acting on the tubes downstream. The PSDs in

the second thru fourth row almost coincide, which suggests that they are almost saturated downstream of the second

row.

Fig. 6 shows the typical PSD of dynamic lift force acting on the sensing ring and the amplitude of the cross-spectral

density (CSD) between the forces acting on the adjoining sensing rings installed on the same tube. The PSD and

the amplitude of the CSD shown in Fig. 6(a) are parallel to each other. Fig. 6(b) shows the phases of the CSD and they

are scattered around zero. According to Axisa et al. (1990) and Au-Yang (1999), the coherence function Gðx1; x2; f Þ;
which characterizes the turbulence-induced excitation force acting on a cylindrical structure, is generally defined

as follows:

Gðx1; x2; f Þ ¼
Sðx1; x2; f Þ
Sðx1; x1; f Þ

; ð3Þ

where Sðx1; x1; f Þ and Sðx1; x2; f Þ are the PSD and CSD of the local fluid dynamic force, which acts on the

infinitesimally narrow width of the cylindrical structure, respectively, and x1 and x2 are two different points on the

structure. Many researchers assume that the coherence function Gðx1; x2; f Þ can be expressed as follows:

Gðx1; x2; f Þ ¼ exp �
jx1 � x2j

l

� �
	 exp �

i2pf ðx1 � x2Þ
Uc

� �
; ð4Þ

where l is the spanwise correlation length of the fluid dynamic force and Uc is the convective velocity. For straight tubes

subjected to a uniform cross flow, the fluctuations are not advected along the tube and the coherence function reduces

to a real function as follows:

Gðx1; x2; f Þ ¼ exp �
jx1 � x2j

l

� �
: ð5Þ
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Fig. 5. PSD of fluid dynamic force acting on cross-shaped tubes in 1st to 4th row: ——, 1st row; —J—, 2nd row; —W—, 3rd row;

—�—, 4th row.
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For practical applications, it is reasonable to consider that the correlation length l of the turbulence-induced excitation
force is constant against varying frequency. The results shown in Fig. 6 confirm that these ideas are reasonable for the

cross-shaped tube bundle as in the case of the circular tube bundle.

3.2. Estimation of PSD of local fluid dynamic force and correlation length

Since the spanwise width of the sensing ring is very narrow, the fluid dynamic force acting on the sensing rings is

considered to be very close to the local fluid dynamic force, which acts on the infinitesimally narrow width of the tube.

However, the sensing ring has a finite width of 12mm, so the fluid dynamic force acting on the sensing rings does not

coincide exactly with the local fluid dynamic force. In this section, the fluid dynamic forces measured by the sensing

rings are converted to a set of the local fluid dynamic forces and their correlation length by the following procedures as

described by Inada (1993, 2001).

Assuming Eq. (5), the following relations are obtained,

S0ðx1; x1; f Þ ¼ Sðx1; x1; f Þl2c1ðZÞ; ð6Þ

S0ðx1; x2; f Þ ¼ Sðx1; x2; f Þl2c2ðZÞ; ð7Þ

where S0ðx1; x1; f Þ and S0ðx1;x2; f Þ are the PSD and CSD of the fluid dynamic force acting on the sensing ring,

respectively; l is the width of the sensing ring, and Z; c1 and c2 are as follows:

Z ¼ l=l; ð8Þ
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Fig. 6. PSD and CSD of local fluid dynamic force (Ug ¼ 1:03m/s): (a) (——) PSD, (—J—) amplitude of CSD and (b) argument

of CSD.
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c1ðZÞ ¼
Z 1

0

Z 1

0

exp �
jx0 � xj

Z

� �
dx dx0 ¼ 2Z2

1

Z
� 1þ exp �

1

Z

� �� �
; ð9Þ

c2ðZÞ ¼
Z 1

0

Z 1

0

exp �
x0 � x
Z

� �
dx dx0 ¼ Z2 �2þ exp

1

Z

� �
þ exp �

1

Z

� �� �
: ð10Þ

Using Eqs. (5)–(10), the PSD of local fluid dynamic force Sðx1; x1; f Þ and the correlation length l can be obtained. First,
l can be expressed as follows:

l ¼ �
jx1 � x2j

log ðc1ðZÞ=c2ðZÞÞG
0

� �; ð11Þ

G0ðx1;x2; f Þ ¼
S0ðx1; x2; f Þ
S0ðx1; x1; f Þ

: ð12Þ

In Eq. (11), both c1 and c2 are a function of l; so iterative calculation is needed to obtain l:
When l has been determined by the iteration with Eq. (11), Z and c1 can be given by Eqs. (8) and (9). Finally, the

PSD of the local fluid dynamic force is obtained from Eq. (6) as follows:

Sðx1; x1; f Þ ¼
S0ðx1; x1; f Þ
ðl2c1ðZÞÞ

: ð13Þ

For a typical example, Fig. 7(a) shows the coherence function G0ðx1;x2; f Þ of the measured dynamic lift force, which is
necessary to estimate l: The maximum value of the coherence G0ðx1; x2; f Þ is about 0.4 at most. In general, it is
conservative to overestimate the coherence function with the exception of the lock-in range by vortex shedding. In view

of the engineering utility of the correlation equation of fluid excitation forces, it is convenient to use a conservatively

estimated constant value as the coherence function. Hence, the values of G0ðx1; x2; f Þ obtained by the experiments are
arranged to the averaged value as the best estimated one, and the maximum value as the conservative one in this report.

Fig. 7(a) indicates that the best estimated value and the conservative value of G0ðx1; x2; f Þ are 0.144 and 0.403,
respectively. Therefore, the ratios of the correlation length to the reference diameter l=D are calculated as 0.17 as the

best-estimated value and 0.37 as the conservative one.

The PSD of the local dynamic fluid force can be obtained from Eq. (13), based on the correlation length calculated

above. Fig. 7(b) shows the nondimensional PSD (NPSD) of the local dynamic lift force, which is defined by the

following equation, as a function of nondimensional frequency:

Fðf �Þ ¼
Sðf Þ

1

2
rU2

g D

� �2
ðD=UgÞ

: ð14Þ

The horizontal axis shows nondimensional frequency given by the following equation:

f � ¼
fD

Ug

: ð15Þ

The NPSD of the local dynamic lift force gradually declines as f � increases, and falls a little more rapidly in the region
of f � > 1: In all cases, no remarkable peaks corresponding to vortex shedding can be observed. Fig. 7(b) also reveals
that the Reynolds number has little effect on the NPSD.

Fig. 8(a) shows the coherence function G0ðx1; x2; f Þ of the local dynamic drag force, and the correlation length and
NPSD of the local dynamic drag force can be derived in the same way. Fig. 8(b) shows the NPSD as a function of

nondimensional frequency. The NPSD of the local dynamic drag force has almost the same trend as that of the lift force

against nondimensional frequency, and little effect of Reynolds number on the NPSD can be seen in those results.

The envelope of those NPSD curves is proposed as a correlation equation of the local dynamic force acting on

the cross-shaped tube bundles in a normal arrangement. The correlation lengths and correlation equations proposed are

summarized in Table 2. The obtained correlation lengths of the fluid dynamic forces acting on the cross-shaped tube

bundle are about 0:1720:18D as the best-estimated value, and are much shorter than that of the random excitation

force acting on circular tube bundles. For instance, the correlation length l of the random excitation force of the

circular tube bundle is almost 1D according to measurements by Inada et al. (2001). This is considered to be because the

ratio of the gap width to tube diameter is small in the tested arrangement of the cross-shaped tube bundles. In fact, l is
rather small and is about 0.45D for a circular tube bundle with a small pitch-to-diameter ratio of 1.26 (Inada et al.,

1993). In general, the correlation length l is scaled by a tube diameter D; however, if the correlation length l is scaled by
the gap width Wg; l=Wg is 1.8B1.9 for the tested cross-shaped tube bundle whereas l=Wg is 1.7–1.8 for a circular tube
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bundle with a pitch-to-diameter ratio of 1.26. They agree well with each other. The correlation length might be

proportional to the gap width rather than the tube diameter when the ratio of the gap width to tube diameter is very

small.

4. Experimental results of large-scale model tests

To investigate the Reynolds effect on the fluid dynamic forces acting on a cross-shaped tube bundles, large-scale

model tests were conducted under high Reynolds number conditions. The experimental results are described below.

4.1. PSD of dynamic lift and drag force

Since the correlation length could not be measured by the large-scale model tests, the NPSD of the local fluid

dynamic force in the large-scale model tests was calculated with the correlation length of the best estimation in the

small-scale model tests by the following procedure.

The flexural rigidity of the tested cross-shaped tube of the large-scale model is large enough for the tube to be

regarded as a rigid beam, compared with that of the cylindrical sensing parts supporting both ends of the tube. In this

case, the joint acceptance of the fluid dynamic force acting on the test tube is expressed as Eq. (9), and the NPSD can be
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Fig. 7. Spanwise coherence function and nondimensional PSD of fluid dynamic force in the lift direction in case of normal

arrangement: (a) spanwise coherence function and (b) Nondimensional PSD of local fluid dynamic force [Reynolds number: —J—,
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9� 104;—"—, 8� 104; , 6� 104; —2—, 4� 104. ——, envelope curve of NPSD.]

T. Nishihara et al. / Journal of Fluids and Structures 18 (2003) 635–650644



calculated by the following equation, assuming that the ratio of the correlation length to tube diameter in the large-scale

model tests is almost the same as for the small-scale model:

Fðf �Þ ¼
S0ðf Þ

l2c1ðZÞ
1

2
rU2

g D

� �2
ðD=UgÞ

; ð16Þ
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Table 2

Nondimensional PSD and correlation length of local dynamic fluid force in lift and drag directions acting on cross-shaped tube

a1 a2 Condition l=D

Lift 4.3� 10�4 �0.83 f �o0:9 0.17/0.37a

4.0� 10�4 �2.0 f � > 0:9
Drag 3.6� 10�4 �0.96 f �o1:0 0.18/0.39

3.7� 10�4 �2.0 f � > 1:0

Correlation equation: Fðf �Þ ¼ a1f
�a2

aFirst entry—best fit; second entry—conservative.
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where S0ðf Þ is the PSD of the fluid dynamic force measured in the large-scale model tests, l ¼ 0:94m, and Z is as follows:

Z ¼
l
D

D

l
: ð17Þ

Using l=D ¼ 0:18 of the dynamic drag force and l=D ¼ 0:17 of the dynamic lift force, Z is calculated as 0.074 and 0.070,
respectively, in the case of the large-scale model tests.

Fig. 9 shows the NPSD of the dynamic drag force measured in the large-scale model tests as a function of

nondimensional frequency f �: The NPSD F has almost the same characteristics as those of the small-scale model tests.
In Fig. 9, the thick lines denote the correlation equations of F shown in Table 2. They show good quantitative

agreement, though F of the large-scale model test is slightly larger than that of the small-scale model tests.
Fig. 10 shows the NPSD F of the dynamic lift force measured by the large-scale model tests and the correlation

equation in the lift direction. They also agree with each other quantitatively, and no remarkable Reynolds effects are

observed.
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Fig. 9. NPSD of local dynamic drag force acting on the cross-shaped tube in the 3rd row. Reynolds number: —J—, 6.8� 105; —W—,

8.4� 105; —�—, 1.0� 106; , 1.2� 106. ——, correlation equation shown in Table 2.
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Fig. 10. NPSD of local dynamic lift force acting on the cross-shaped tube in the 3rd row. Reynolds number: —J—, 6.8� 105; —W—,

8.4� 105; —�—, 1.0� 106; , 1.2� 106. ——, correlation equation shown in Table 2.
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Hence, the above results suggest that the Reynolds number has little effect on dynamic drag and lift forces acting on

cross-shaped tube bundles at least for Reo106. However, F of the large-scale model tests is a little larger than that of
the small-scale model tests, so a conservative correlation length is recommended for estimating the random vibration.

4.2. PSD of dynamic torque

The fluid dynamic torque acting on the cross-shaped tube bundle was also measured in the large-scale model tests.

Given that the correlation length of the fluid dynamic torque is almost the same as for dynamic lift and drag, the fluid

dynamic torque measured can be converted to the NPSD of the local fluid dynamic torque as follows:

Fðf �Þ ¼
S0ðf Þ

l2c1ðZÞ
1

2
rU2

g D2
� �2

ðD=UgÞ

; ð18Þ

where S0ðf Þ is the PSD of the fluid dynamic torque measured in the large-scale model tests.
Fig. 11 shows the NPSD of the local dynamic torque in the large-scale model tests converted by using l=D ¼ 0:16:

Again, the NPSD F of the local fluid dynamic torque has almost the same characteristics as for local dynamic lift and
drag. F slowly decreases as nondimensional frequency increases, and falls a little more rapidly in the range of f � >
1B1:5: Besides, no typical peaks of vortex shedding appear, and the NPSDs acting on the tube in the second row and
the third row overlap one another. The envelope of the NPSD curves is also proposed as a correlation equation for the

local dynamic torque in Table 3.
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Fig. 11. NPSD of local dynamic torque acting on the cross-shaped tubes: —J—, 2nd row, Re=6.8� 105; —W—, 2nd row,

Re=8.4� 105; —X—, 2nd row, Re=1.0� 106; —B—, 2nd row, Re=1.2� 106; —&—, 3rd row, Re=6.8� 105; —+—, Re=3rd
row, 8.4� 106; —�—, Re=3rd row, 1.0� 106; , 3rd row, 1.2� 106. ——, envelope curve of NPSD.

Table 3

NPSD of local dynamic fluid torque acting on cross-shaped tube

Correlation length 0.16 (best fit)

l=D 0.40 (conservative)

Correlation equation Frequency condition a1 A2

Fðf �Þ ¼ a1f
�a2 f �o1:5 4.0� 10�5 �0.86

f � > 1:5 5.8� 10�5 �1.8
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5. Examination of correlation equations of dynamic torque

As for random excitation force in the lift and drag directions, it is confirmed that the proposed correlation equations

are reasonable and the Reynolds effects can be considered to be negligible by comparing the results of the small-scale

model tests and the large-scale model tests. On the other hand, the fluid dynamic torque was measured only in the large-

scale model tests and so the validity of the correlation equation and the Reynolds effect was not examined sufficiently.

However, the sensing part of the small-scale model can detect either lift or drag in one test, and no torque can be

detected because of the sensing mechanism.

Therefore, free oscillation tests with another small-scale model were conducted to measure the response amplitude of

free oscillation by random excitation in the torsional direction. The results were then compared with the predicted

amplitude by using the correlation equations shown in Table 3.

5.1. Experimental arrangement of free oscillation test

Fig. 12 schematically shows the small-scale model used for the free oscillation tests. The loop shown in Fig. 1 was

used for the tests again, and the small-scale cross-shaped tubes were installed in a normal arrangement of four rows with

four tubes per row. The reference diameter D is about 90mm and the transverse pitch is about 75mm and the minimum

gap width is about 8mm. Both ends of the 9 tubes in total were supported by slender aluminum rods of 4.5-mm

diameter and 80-mm length. The torsional rigidity of the cross-shaped tube is sufficiently larger than that of the

supporting rods so it can be regarded as a rigid shaft with both ends elastically supported by torsional springs.

The torsional responses of the five numbered tubes were measured by the strain gauges attached to the supporting rod.

The other seven tubes (colored gray in Fig. 13) were dummies rigidly fixed to the test-section. In the free oscillation

tests, the range of the Reynolds number was 2.5� 104oReo4.2� 104.

5.2. Comparison of the measured response and the predicted response

The torsional response of the cross-shaped tube having both ends elastically supported by a torsional spring can be

estimated by the following methods.

It is assumed that the motion of a tube in the tube bundle is hardly coupled with those of adjacent tubes when the

response amplitude of the tube is small. In this case, it is supposed that a tube elastically supported in the tube bundle

can be considered to be a one-degree-of-freedom system. The motion equation of the rigid shaft elastically supported by

a torsional spring is expressed as follows:

.yþ 2znon
’yþ o2ny ¼

FT ðtÞ
Ip

; ð19Þ

where y is the angular displacement of the rigid shaft, FT ðtÞ is random excitation torque, and Ip is the inertia moment

including the added inertia moment of the shaft. The added inertia moment IaT is calculated by

IaT ¼ KT
1

128
rpD4; ð20Þ

where KT ¼ 1:5 (Inada et al., 2002).
With lightly damped structures, the root-mean-square amplitude of the response can be calculated as follows:ffiffiffiffiffi

y2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX SðfnÞ
64p3I2p f 3n zn

l2c21

s
; ð21Þ

where l is the spanwise length of the shaft, and S is the one-sided PSD of the local fluid dynamic torque. Using the

correlation equations shown in Table 3, S is calculated as

Sðf Þ ¼
1

2
rU2

g D2
� �2

F
fD

Ug

� �
D

Ug

: ð22Þ

Fig. 13 shows the root-mean-square amplitude of the torsional response measured by the free-oscillation tests and the

amplitude predicted with the correlation equation, giving the damping ratio zn ¼ 0:5%: They agree well quantitatively.
Consequently, the proposed correlation equations appear to be appropriate, and the Reynolds effect can be considered

negligible.
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6. Conclusion

Fluid dynamic forces acting on a cross-shaped tube bundle in a normal arrangement subjected to cross-flow were

measured by water tunnel tests with two types of scale model.

The results of the study can be summarized as follows.

(1) The measured fluid dynamic drag, lift and torque acting on the cross-shaped tube bundle in cross-flow were

successfully compiled into correlation equations, which include the NPSD of the local fluid dynamic force and the

spanwise correlation length. The results provide a universal spectrum and spanwise correlation length for

evaluating the turbulence-induced vibration response of cross-shaped tube bundles in cross flow.

(2) The PSD of fluid dynamic drag, lift and torque acting on a cross-shaped tube bundle have mutually similar

properties and they gradually decline as the frequency increases. No remarkable spectral peaks of vortex shedding

appeared. The reason for this is considered to be that the ratio of gap width to tube diameter is small for the tested

arrangement.
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Fig. 12. Schematic of free oscillation test model of cross-shaped tube bundle.
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(3) The PSD of the fluid dynamic forces acting on the tube in the first row is smaller than those acting on the tubes

downstream. The PSD is almost saturated downstream of the second row.

(4) The ratios of the correlation lengths to the tube diameter for the cross-shaped tube bundle are much shorter than

that of the random excitation force acting on circular tube bundles. However, the ratio of the correlation length to

the minimum gap width for the cross-shaped tube bundle agrees well with that for a circular tube bundle with a

small pitch-to-diameter ratio. This implies that the correlation length might be proportional to the minimum gap

width rather than the tube diameter when the ratio of the minimum gap width to tube diameter is very small.

(5) The Reynolds number effects on the nondimensional power spectral density of the local fluid dynamic force can be

considered negligible at least in the range of Reynolds number o106.
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